17ELE15/25

Time: 3 hrs .
Note: Answer any FIVE full questions, choosing ONE full question from each module.

## Module-1

1 a. State and explain Kirchhoff's Laws as applied to D.C circuits.
(06 Marks)
b. Define the co-efficient of coupling and find its relation with $L_{1}, L_{2}$ and $M$.
(06 Marks)
c. In the circuit shown in Fig Q1(c), what is the voltage across AB if (i) Switch S in open and (ii) Switch S is closed.


Fig Q1(c)
(08 Marks)
OR
2 a. State and explain Faraday's Laws of Electro-magnetic inductions.
(06 Marks)
b. Derive an expression for the energy stored in an inductive coil.
c. A circuit consists of two parallel resistors having resistances of $20 \Omega$ and $30 \Omega$ respectively connected in series with $15 \Omega$. If the current through $15 \Omega$ resistor is 3 A , find : i) Current in $20 \Omega$ and $30 \Omega$ resistor ii) The voltage across the whole circuit iii) The total power and power consumed in all resistances.
(08 Marks)

## Module-2

3 a. Define back emf of D.C motor. What is its significance?
(04 Marks)
b. With a neat sketch, explain the construction of the various parts of a D.C generator.
(08 Marks)
c. With a neat figure, explain the construction and working principle of a dynamometer type Wattmeters.
(08 Marks)

## OR

4 a. Deriver the Torque equations of a D.C motor.
(06 Marks)
b. Sketch the various characteristics of D.C shunt and D.C series motor.
(06 Marks)
c. A 4 pole 220 V , lap connected D.C shunt motor has 36 slots, each slot containing 16 conductors; it draws a current of 40A from the supply. The field resistance and armature resistances are $110 \Omega$ and $0.1 \Omega$ respectively. The motor develops an output power of 6 kW . The flux per pole is 40 mwb . Calculate: i) The speed ii) The Torque developed by armature and iii) The shaft torque.
(08 Marks)

## Module-3

5 a. Define and derive an expression for root mean square value of an alternating quantity.
(06 Marks)
b. Derive an equation for the power consumed by an R-L series circuit. Draw the waveform of voltage, current and power and draw the phasor diagram,
(08 Marks)
c. With a neat figure, explain pipe earthing.
(06 Marks)

## OR

a. With a circuit diagram, explain the working of a two way control of a Lamp.
(06 Marks)
b. A circuit consists of a resistance of a $10 \Omega$, an inductance of 16 mH and a capacitance of $150 \mu \mathrm{~F}$ connected in series. A supply of 100 V at 50 Hz is given to the circuit. Find the current, p.f and power consumed by the circuit. Draw the vector diagram.
(06 Marks)
c. Two circuits A and B connected in parallel across $200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply circuit. A consists of $10 \Omega$ resistance of 0.12 H inductance in series while circuit B consists of $20 \Omega$ resistance in series with $40 \mu \mathrm{~F}$ capacitance. Calculate i) current in each branch ii) Supply current iii) Total power factor. Draw the phasor diagrams.
(08 Marks)

## Module-4

7 a. Derive the emf equation of A.C generator.
(06 Marks)
b. Show that the two Wattmeters are sufficient to measure three phase power. Also derive an expression for the power factor in terms of wattmeter readings.
(08 Marks)
c. When three balanced impedance are connected in star across a 3 phase $415 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. The line current drawn is 20 A , at a Lagging p.f of 0.4 . Determine the parameters of the impedance in each phase.
(06 Marks)

## OR

8 a. In a three phase Delta connection, find the relation between line and phase values of current and voltages. Also derive the equation for three phase power.
(06 Marks)
b. With neat sketches, explain the construction of salient pole alternator.
(06 Marks)
c. A 24 pole turbo alternator has star connected armature winding with 144 slots and 10 conductors per slot, it is driven by a low speed Kaplan turbine at a speed of 250 rpm . The winding has full pitched coils with a distribution factor of 0.966 . The flux per pole is 67.3 mwb . Determine: i) The frequency and magnitude of line voltage ii) The output KVA of the machine, if the total current in each phase is 50 A .
(08 Marks)

## Module-5

9 a. Derive EMF equation of transformer.
(06 Marks)
b. Derive the condition for which the efficiency of a transformer is maximum.
(06 Marks)
c. A 3 phase, 6 pole, 50 Hz Induction motor has a slip of $1 \%$ at no-load, and $3 \%$ at full load. Determine : i) Synchrous speed ii) no-load speed iii) Full load speed iv) Frequency of rotor current at stand still v) Erequency of rotor current at full load.
(08 Marks)

## OR

10 a. Explain clearly the working principle of a three phase induction motor.
(06 Marks)
b. A single phase 20 KVA transformer has 1000 primary turns and 2500 secondary turns. The net cross sectional area of the core is $100 \mathrm{~cm}^{2}$. When the primary winding is connected to 500 V 50 Hz supply, calculate: i) The maximum flux density in the core ii) The voltage induced in the secondary winding iii) The primary and secondary full load currents.
(06 Marks)
c. A single phase transformer working at 0.8 p.f has an efficiency of $94 \%$ at both three fourth full load of 600 kW . Determine the efficiency at half full load, unity power factor. ( $\mathbf{0 8}$ Marks)


